How To Optimize Digital Streaming With Optical Fiber

A Better Way To Stream

Blog
Categories:
Digital-to-analog converters,
Music servers and computer audio,
Digital cables
How To Optimize Digital Streaming With Optical Fiber

Installation
The fiber media converters are active devices, so you’ll need a power supply for them. You can use the power supplies that are typically supplied with the FMCs, but as these are typically switch-mode supplies, I strongly recommend ordering a good linear supply that matches the voltage requirements of your specific FMC. I’ve used inexpensive Reliapro linear power supplies from Jameco Electronics (approx. $11 each) very successfully, as well as power supplies purpose-built for audio applications, e.g. the Uptone Audio LPS-1.2 and the Keces P3. These power supplies support a range of voltages so you can set them to match your FMC’s voltage requirements. 

Below is a list of equipment for a basic setup: 

1.2x TP-LINK MC200L Gigabit Media Converter, 1000Mbps RJ45 to 1000M multi-mode fiber, up to 550m/1800ft. 
2.2x TP-Link TL-SM311LM 1000-Base 850nM MMF LC/LC optical transceivers.
3.Cat 6 Ethernet cables. (I use Shunyata Research Venom as a minimum spec Ethernet cable; Shunyata Alpha or Sigma Ethernet cables will deliver notably improved audio quality.) The number required is system-dependent.
4.Tripp-Lite Duplex Multimode OM-1 62.5/125 Fiber Patch Cable (LC/LC termination). The length will vary with your application, but the fiber optic cable is inexpensive. For example, 30 meters costs approximately $40. 
5.2x 4.5W Jameco Reliapro AC-to-DC Regulated Linear Wall Adapter 9 Volt, PN:1953639
6.Optional Cisco WS-C2960L-8TS-LL Catalyst Ethernet Switch (8-port). 

Here are the steps to connect a basic fiber optical network:

1.Connect your music server/NUC/Roon Core to your router with an Ethernet cable.
2.Connect the Ethernet cable from the Router to the Ethernet switch.
3.Connect the Ethernet cable from the Ethernet switch to the fiber media convertor.
4.Connect the optical-fiber patch cable from the upstream FMC to the downstream FMC 2 that will connect to the streamer or network bridge (length/run will depend on your setup and application).
5.Connect Ethernet cable from the downstream FMC to the streamer or network bridge.

A representative basic configuration is shown here in Figure 1.

Sonore Optical Module
If you like the benefits obtained from the basic configuration, you can go “high-end” and replace the generic FMCs with Sonore’s OpticalModule and use higher-quality power supplies. The Sonore OpticalModule was designed specifically for high-end audio applications, and features a considerably higher-specification ultra-low-jitter femto-oscillator (i.e., “clock”) and four high-quality, ultra-low-noise linear regulators. Using a OpticalModule FMC will result in considerably less jitter, lower clock phase noise, and a notable decrease in the noise floor compared to generic FMCs. Most notably, the lower clock phase noise results in more precise and accurate timing, and a concomitant increase in overall audio quality. 

Below is a list of equipment for a setup using the Sonore OpticalModule:

1.2x Sonore OpticalModules.
2.2x TP-Link TL-SM311LM 1000-Base 850nM MMF LC/LC optical transceivers.
3.2x Uptone Audio LPS-1.2, or Keces linear power supply. 
4.Cat 6 Ethernet cables. (I use Shunyata Research Venom as a minimum spec Ethernet cable; Shunyata Alpha or Sigma Ethernet cables will deliver notably improved audio quality.) 
5.Tripp-Lite Duplex Multimode OM-1 62.5/125 Fiber Patch Cable (LC/LC termination). Length will vary per your application, but the fiber optic cable is inexpensive. For example, 30 meters costs approx. $40. 
6.Optional Uptone Audio EtherREGEN Ethernet switch. 

Figure 2 depicts an optical fiber configuration using the Sonore OpticalModule.